AMICSA 2012

Integrated SAR Receiver/Converter for L, C and X bands
Markku Åberg
VTT Technical Research Centre of Finland
The Team

Markku Åberg\(^{(1)}\), Jan Holmberg\(^{(1)}\), Faizah Abu Bakar\(^{(2)}\), Tero Nieminen\(^{(2)}\), Qaiser Nehal\(^{(2)}\), Pekka Ukkonen\(^{(2)}\), Ville Saari\(^{(2)}\), Kari Halonen\(^{(2)}\), Torsti Poutanen\(^{(3)}\) and Iiro Sundberg\(^{(3)}\)

\(^{(1)}\) VTT Technical Research Centre of Finland
\(^{(2)}\) Aalto University School of Electrical Engineering
\(^{(3)}\) DA-Design Oy
Outline

- Requirements
- Chip design
- Verification
- Compliance statement
- Outlook for further improvements
- Conclusion
Requirements

- **Final specifications**

<table>
<thead>
<tr>
<th>REQ-ID</th>
<th>Name</th>
<th>Original ESA specification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A.2.1.1 General Functional Requirements</td>
<td></td>
</tr>
<tr>
<td>2.1.1-1</td>
<td>Bands</td>
<td>C,L,X, two BWs 320 and 100 MHz</td>
</tr>
<tr>
<td>2.1.1-2</td>
<td>ADC scalability</td>
<td>8 to 5 bit</td>
</tr>
<tr>
<td>2.1.2-3</td>
<td>Digital output</td>
<td>I-Q format</td>
</tr>
<tr>
<td>2.1.2-8</td>
<td>LO power</td>
<td>< 7 dBm</td>
</tr>
<tr>
<td>2.1.2-9</td>
<td>NF within Bandwidth</td>
<td>< 10 dB</td>
</tr>
<tr>
<td>2.1.2-11</td>
<td>Gain Flatness vs. Bandwidth</td>
<td>±1.5 dB Goal ±0.5 dB</td>
</tr>
<tr>
<td>2.1.2-12</td>
<td>Phase linearity vs. Bandwidth</td>
<td>±5 deg (TBC)</td>
</tr>
<tr>
<td>2.1.2-18</td>
<td>IMD</td>
<td>-60 dBC, at -15 dBFS, 8 bits</td>
</tr>
<tr>
<td>2.1.2-22</td>
<td>Max power consumption</td>
<td>900 mW</td>
</tr>
<tr>
<td>2.1.2-24</td>
<td>I/Q gain balance</td>
<td>±0.5 dB</td>
</tr>
<tr>
<td>2.1.2-25</td>
<td>I/Q phase balance</td>
<td>±5 deg</td>
</tr>
<tr>
<td>2.1.2-26</td>
<td>Alias signal suppression</td>
<td>>30 dB</td>
</tr>
</tbody>
</table>
Chip Design

- Chip design
 - block diagram
 - circuit highlights
 - chip interfaces
Block diagram

Block diagram of the circuit. IDAC = current-steering D/A converter.

LNAs & filters external
Gain Allocation

With -46 dBm input signal, needed gain for full-scale signal at ADC input is 42 dB.
Circuit highlights, RF

- The RF front end consists of:
 - an amplifier,
 - an active balun,
 - two Gilbert cell mixers
 - a passive polyphase filter for the LO signal
 - two controlled attenuators in the signal path.
 - the first is after the amplifier and
 - the second is after the mixers.
Circuit highlights, RF

Wideband amplifier schematic C and X band; L band similar but without the peaking inductors L1-L3

Two-stage polyphase filter schematic L-band; C and X band have differential input.

Mixer schematic
Circuit highlights, BB

- The baseband block consists of:
 - a source follower designed to drive a large parasitic capacitive load,
 - two VGAs (VGA 1 and VGA2),
 - An IDAC to compensate dc offset
 - a 5th-order 160-MHz and 5th-order 50-MHz low-pass filter,
 - an output buffer designed to drive the following 8-bit ADC
 - an analogue test output
Circuit highlights, BB

Fifth-order gm-C low-pass filter

Transconductor circuit
Circuit highlights, ADC

- The analogue-to-digital converter (ADC) circuit consists of:
 - a sample and hold (SH) front-end,
 - six switched capacitor (SC) double-sampling 1.5-bit pipeline stages,
 - and a 2-bit flash back-end stage
Circuit highlights, ADC

The ADC block diagram including the on-chip reference voltage buffer
Chip interfaces

rf inputs: C L X

LVDS outputs
Verification

- Verification:
- test board
- test results BB
- test results ADC
- test results C-band
- test results L-band
- test results X-band
Test board

- Common BB board
- Band selective rf module
LO-leakage

During the board design serious LO-leakage problem arose.
- L-band LO-RF isolation -36.5 dB (single ended)
- C-band LO-RF isolation -35 dB (differential)
- X-band LO-RF isolation -32 dB (differential)

Consequences of the leakage
- High dc-offset due to the "phase detector behaviour" in mixers
 - Could not be totally compensated in all temperatures
- Possible compression of RF-amplifier

It turned out that fairly extensive testing of both L- and C-band systems could, anyway, be carried out.
Test results BB

Phase linearity of the 160MHz filter with ± 15 degree pipe
Test results ADC

Summary of the ADC measurements

<table>
<thead>
<tr>
<th>Mode</th>
<th>P[mW] (1 ADC)</th>
<th>DNL[LSB]</th>
<th>INL[LSB]</th>
<th>ENOB[bits]</th>
<th>ERBW[MHz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>100</td>
<td>0.38</td>
<td>0.577</td>
<td>6.53</td>
<td>200</td>
</tr>
<tr>
<td>7</td>
<td>84</td>
<td>0.31</td>
<td>0.46</td>
<td>6.30</td>
<td>200</td>
</tr>
<tr>
<td>6</td>
<td>66</td>
<td>0.33</td>
<td>0.374</td>
<td>5.40</td>
<td>1000</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>0.35</td>
<td>0.32</td>
<td>4.70</td>
<td>>1000</td>
</tr>
</tbody>
</table>
Test results

<table>
<thead>
<tr>
<th>parameter</th>
<th>320 MHz</th>
<th>100 MHz</th>
<th>comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power consumption</td>
<td>≈800 mW</td>
<td>≈650 mW</td>
<td>ADC 8-bit mode</td>
</tr>
<tr>
<td>Alias signal suppression</td>
<td>>30 dB</td>
<td>>30 dB</td>
<td></td>
</tr>
<tr>
<td>Dynamic range</td>
<td>38 dB</td>
<td>43 dB</td>
<td></td>
</tr>
</tbody>
</table>

Common parameters
Test results C-band-Introduction

- The measurement were done in 5 different temperatures (-25 deg, 0 deg, 22 deg, 45 deg and 70 deg).
- All the measurements have been performed at the analog test output, Q branch.
- The method was to use the same tuning setting as in room temperature (22 deg) in all different temperatures. If the setting gave erroneous results, than tuning is done to get correct results.
- In IQ imbalance measurement, the common, main gain tuning (VGA1) for both of the branches are kept the same in all temperatures. Only the fine gain tuning and the DC-offset compensation tuning was done.
- LO-level 5.5 dBm
Test results C-band

Gain range showing maximum and minimum value (160MHz BB–filter) at 5 different temperatures

* The same setting as nominal gain at -25 degree C
** The same setting as nominal gain at 0 degree C
Test results C-band

* The same setting as nominal gain at -25 degree C
** The same setting as nominal gain at 0 degree C
Test results C-band

Gain imbalance (160MHz BB-filter) at 5 different temperatures

-25 deg. C
0 deg. C
Room temperature
45 deg. C
70 deg. C

Frequency [MHz]

Gain imbalance [dB]
Test results C-band

Gain imbalance (50MHz BB-filter) at 5 different temperatures

-25 deg. C
0 deg. C
Room temperature
45 deg. C
70 deg. C

Gain imbalance [dB]

Frequency [MHz]
Test results C-band

Phase imbalance (160MHz BB-filter) at 5 different temperatures

-25 deg. C
0 deg. C
Room temperature
45 deg. C
70 deg. C
Test results C-band

Phase imbalance (50MHz BB-filter) at 5 different temperatures

-25 deg. C
0 deg. C
Room temperature
45 deg. C
70 deg. C
Noise Figure

The maximum LO-level is about 6.5 dBm due to the leakage, nominal in measurements 5.5 dBm.

<table>
<thead>
<tr>
<th></th>
<th>L band</th>
<th>C band</th>
<th>X band</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>predicted</td>
<td>measured</td>
<td>predicted</td>
</tr>
<tr>
<td>320 MHz</td>
<td>10 dB</td>
<td>14 dB</td>
<td>11 dB</td>
</tr>
<tr>
<td>100 MHz</td>
<td>15 dB</td>
<td>15 dB</td>
<td>15 dB</td>
</tr>
</tbody>
</table>

Noise Figure vs. LO-level C-band
Test results L-band-Introduction

• The measurement were done in 3 different temperatures (0 deg, 22 deg and 45 deg).
• All the measurements have been performed at the ADC test input, Q branch.
• We tried to find the best chip parameter setting in every different temperatures and performed the measurements.
• For IQ imbalance measurement, the optimal gain in different temperatures for different filter bandwidth are used respectively.
LO-level 5.5 dBm
Test results L-band

Nominal gain (150MHz BB-filter) at 3 different temperatures

Nominal gain (50MHz BB-filter) at 3 different temperatures
Test results L-band

Magnitude error

Magnitude [dB]

Frequency [MHz]

45 C, 22 C, 0 C

Magnitude error

Magnitude [dB]

Frequency [MHz]

45 C, 22 C, 0 C
Test results L-band
test results X-band

- First run X-band gain only 9 dB
 - Some improvements done, but
 - In the integrated version gain collapsed

Wide band measurement of the total gain. The circuit was matched to X-band. Matched L- and C-band total gains were in the order of 40 dB. Out1 is the initial test board result and Out 2 after re-tuning the matching.
Summary of performance

<table>
<thead>
<tr>
<th>Name</th>
<th>Final ESA specifications</th>
<th>Compliance (over the temperature range unless otherwise stated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO power</td>
<td>< 7 dBm</td>
<td>< 6.5 dBm, before compression.</td>
</tr>
<tr>
<td>NF within Bandwidth</td>
<td>< 10 dB</td>
<td>L-b 320 MHz ≤ 11 dB; 100 MHz ≤ 15 dB ≤ 22°C; LO 5.5 dBm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C-band 320 MHz 9 dB at T 22°C, LO 6.5 dBm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C-b 320 MHz ≤ 13.5 dB; 100 MHz ≤ 18 dB ≤ 22°C; LO 5.5 dBm</td>
</tr>
<tr>
<td>Gain Flatness vs. Bandwidth</td>
<td>±1.5 dB</td>
<td>C-band 2.3 dB worst case</td>
</tr>
<tr>
<td></td>
<td>Goal ±0.5 dB</td>
<td>L-band 2.0 dB worst case</td>
</tr>
<tr>
<td>Phase linearity vs. BW</td>
<td>±5 deg (TBC)</td>
<td>±15 deg</td>
</tr>
<tr>
<td>DNL</td>
<td>±0.5 LSB</td>
<td>Yes, ±0.38 LSB</td>
</tr>
<tr>
<td>INL</td>
<td>±0.5 LSB</td>
<td>±0.58 LSB</td>
</tr>
<tr>
<td>IMD</td>
<td>-60 dBc, at -15 dBFS, 8 bits</td>
<td>-50 dBc, at -15 dBFS, 8 bits</td>
</tr>
<tr>
<td>Max power consumption</td>
<td>900 mW</td>
<td>max 800 mW (8 bits, 320 MHz) min 500 mW (5bits, 100 MHz)</td>
</tr>
<tr>
<td>I/Q gain balance</td>
<td>±0.5 dB</td>
<td>C-band ±1.1 dB, L-band ±0.8 dB</td>
</tr>
<tr>
<td>I/Q phase balance</td>
<td>±5 deg</td>
<td>C-band ±5 deg, L-band ±7 deg (both±2.5 deg to 280/80 MHz)</td>
</tr>
<tr>
<td>Alias signal suppression</td>
<td>>30 dB</td>
<td>Yes</td>
</tr>
<tr>
<td>Dynamic range</td>
<td>39 dB</td>
<td>Yes, 39 dB 100 MHz both bands</td>
</tr>
<tr>
<td></td>
<td></td>
<td>320 MHz C-band 37 dB, L-band 38 dB</td>
</tr>
</tbody>
</table>
Outlook for further improvements

- Outlook for further improvements
- automatic on chip adjustments
- improvement of LO isolation
- improvement of Noise Figure
- improvement of ADC S&H
Improvement of LO isolation
possible solutions

- All LO inputs differential
 - Now C & X differential; L single-ended
- C and X-band LO and RF feeds orthogonal
 - At the corners
 - L-band as now, in the middle (but perhaps differential input gives enough improvement)
 - Probably increases chip area; already quite pad-limited
- LO on-chip buffering after the polyphase filter
- Fractional LO feed (e.g. by /2 or /3)
 - And on-chip frequency multiplier
Conclusion

- A multi-band (L,C,X) receiver designed and realized
- C and L-bands operational, X-band heavy gain loss
- L and C-band values in specifications up to room temperature
 - over that input amplifier gain starts to drop under specs
 - cannot be fully compensated with gain control
- Greatest problem LO-RF leakage
 - large dc-offset
 - goes partially out of ADC input range
 - restricts control adjustments' usable range
- Improvements possible and presented
VTT creates business from technology